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Overview of the EOS MLS Temperature product

❑ This talk describes Temperature data produced by version 01.51 of the EOS
MLS data processing algorithms.

❑ MLS retrieval has multiple “phases,” each of which uses optimal estimation
with a different subset of MLS radiances, and each phase retrieves its own
temperature.
➯ Each phase retrieves temperature and while successive phases may use a

prior result as an initial guess, results are not constrained to agree.

➯ The standard temperature from 316 hPa to 1 hPa is from “Core.” Core
retrieve temperature from the 118-GHz radiance.

➯ The standard temperature from 0.68 hPa to 0.001 hPa is “CorePlusR2A,”
which add radiances from the 190-GHz radiometer.

➯ CorePlusR3, which uses the 118-GHz and 240-GHz radiometers should
provide the best resolution in the troposphere, but this retrieval has signif-
icant biases at the lowest retrieval levels and is prone to vertical oscillation
(largely managed in v01.51.)
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Overview of the EOS MLS Temperature product

❑ Temperature profiles are retrieved on a grid with pressure as the vertical co-
ordinate: six pressure levels per decade of pressure (∼2.5 km) from 316 hPa to
0.1 hPa and three per decade (∼5 km) for pressures from 0.1 hPa to 0.001 hPa.

❑ The MLS representation of the atmosphere is a linear interpolation of temper-
ature between the retrieval points.

❑ Information from five successive limb-scans of the atmosphere is used to re-
trieve each profile.

❑ Horizontally, profiles are spaced by 1.5◦ great circle angle along the orbit track
(∼160 km, 24.6 s).

❑ Retrieval of temperature is complicated by its central role in conversion of
height to pressure through the assumption of hydrostatic balance. Derivatives
(dependence of radiances upon a particular temperature profile point) used
in the forward model include effects of hydrostic balance in ways that are not
immediately obvious.
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MLS O2 (Pressure-Temperature) Radiances
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EOS MLS Spectral Coverage (folded sideband)
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Blue lines correspond to 10 hPa tangent point.

Green lines correspond to 30 hPa tangent point.

Red lines correspond to 100 hPa tangent point.

Paler labels indicate redundant signals or alternate

polarizations.

Standard 25 channel filter bank

Mid band 11 channel filter bank

✸ Single 0.5 GHz wide filter

● Digital Autocorrelator Spectrometer

(∼0.2 MHz resolution over ∼10 MHz)
Arrows indicate direction of channel numbering.
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R1[A/B]:118 126.8000 GHz (lower sideband only)
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June 9, 2003. Nathaniel Livesey
Spectroscopic data provided by Mark Filipiak
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EOS MLS Spectral Coverage (split sideband)
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Blue lines correspond to 10 hPa tangent point.

Green lines correspond to 30 hPa tangent point.

Red lines correspond to 100 hPa tangent point.

Paler labels indicate redundant signals or alternate

polarizations.

Standard 25 channel filter bank

Mid band 11 channel filter bank

✸ Single 0.5 GHz wide filter

● Digital Autocorrelator Spectrometer

(∼0.2 MHz resolution over ∼10 MHz)
Arrows indicate direction of channel numbering.

Local oscillator frequencies:
R1[A/B]:118 126.8000 GHz (lower sideband only)
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June 9, 2003. Nathaniel Livesey
Spectroscopic data provided by Mark Filipiak

❑ O2 is well-mixed, with a fixed VMR into the mesosphere, and reasonably certain VMR into the
lower thermosphere. O2 radiances provide pressure and temperature.

❑ Spectra shown are for typical limb tangents at 100 hPa, 30 hPa, and 10 hPa.

❑ The upper plot shows typical radiances over 9 GHz about the 118-GHz O2 line, which is a
primary source of MLS pressure/temperature information. There is a 25-channel filterbank on
the line center and four discrete channels at ∼±1.7 GHz and ∼±3.5 GHz from the line center.
Radiances at 100 hPa are becoming opaque, even in outer channels.

❑ The lower plot shows the “R3” radiances, including the much weaker 234 GHz O2 line. This
line provides information into the troposphere but continuum from upper sideband and base-
line uncertainties make the measurement problematic.
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Typical Band 1 radiance fits

❑ This is a standard radiance
inspection plot showing residuals
for band 1, a standard MLS
filterbank centered on the
118-GHz O2 line.

❑ Residuals are shown for four
retrieval phases
➯ Residuals for different phases

are very similar

➯ RMS of residuals is consistent
with estimated precision.

➯ Residuals are asymmetric
about the line center, with
some mean residuals more
than 1 K.

➯ There is difficulty fitting ozone
lines near band extremes.
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Averaging Kernels
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❑ Left column is vertical averaging kernels
(VAK) and right column is horizontal
averaging kernels (HAK) for the three
temperature products.

❑ Dashed black lines are FWHM (ideally 2.5 km
to 0.1 hPa), solid are integrated kernels
(ideally 1).

❑ Vertical Averaging kernel FWHM near
tropopause:
➯ Core 8.5 km

➯ CorePlusR2A 5.5 km (opaque H2O line)

➯ CorePlusR3 4.5 km (O18O line)

❑ Core horizontal resolution is also poorer at
levels below 46 hPa.

❑ Above 46 hPa, differences between phases
are minor.

❑ In theory, CorePlusR3 temperature should
be our best product.

❑ These VAKs cut off sharply at 316 hPa and
0.001 hPa, which is non-physical. Their utility
in convolution of correlative data is
questionable. This is an area of current work.
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CHAMP data and MLS Temperature Phases
MLS minus CHAMP Bias
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❑ CHAMP is a GPS occultation instrument (∼10x
MLS vertical resolution) from the surface to
∼10 hPa. It’s absolute calibration is simple and
well-regarded.

❑ Plots are averages of more than 5000 coincidence
closer than 3 hrs and 250 km, August 2004 to
August 2005.

❑ Plots show Bias (top) and Scatter (bottom) of
MLS minus CHAMP for MLS Core (the standard
product), CorePlusR2A and CorePlusR3
temperatures. In the left-hand column, CHAMP
has been least-squares fit to the linear
interpolation of MLS six-per-decade profile points.
In the right-hand column, CHAMP has been
subsequently convolved with VAKs to degrade
CHAMP to MLS resolution.

❑ Biases are made slightly worse by application of
VAKs.

❑ CorePlusR3 has -3 K bias at 100 hPa and >10 K at
316 hPa.

❑ 1-σ scatter of differences is 2 K at 100 hPa to
14.7 hPa.
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Comparison: GEOS-4 with MLS Std. Temp.
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a)

scatter (solid) prec. (dashed)❑ The GMAO GEOS-4 first-look product is
MLS a priori temperature. This is the
late-look product, interpolated to MLS.
This plot has two days (∼7000 pts) per
3-month bin.

❑ GEOS-4 is not convolved with MLS VAKs.

❑ Lowest level 316 hPa (Z=-2.5) and top level
shown is 0.1 hPa (Z=1).

❑ GEOS-4 model is not constrained by data
above ∼1 hPa, (Z=0)

❑ Seasonal and latitudinal bins show MLS is
consistently warmer ∼1 K throughout most
of the stratosphere, and 2-5 K warmer at
0.1 hPa. MLS is ∼ K colder near tropopause
in mid-latitude and Tropics.

❑ Scatter (RMS) of differences is ∼2.5 K or
less below Z=0 except for winter mid-high
latitudes (planetary waves and gravity
waves.)

❑ GEOS-4 is not constrained by data above
∼1 hPa (Z=0).
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Comparison with AIRS
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a)

scatter (solid) prec. (dashed)❑ We have coincidences within
500±100 seconds and of order 10 km for
almost every MLS measurement. AIRS data
screened by high+middle+low quality flags all
good. MLS screened as usual (Status=0 →

not strongly influenced by cloud.)

❑ Data shown is average of two days (the first
day of the second and third month) for each
3-month bin.

❑ Latitude bins show a generally consistent
picture: AIRS is 1.5-2.5 K cooler than MLS
100 hPa to 10 hPa and 2.5-5 K cooler
10 hPa-1 hPa.

❑ Increased scatter differences in the in the
winter hemisphere indicates variation (gravity
waves?) on scales that different viewing
geometries resolve differently.
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Comparison with ACE
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scatter (solid) prec. (dashed)❑ ACE is a solar occultation instrument, and
profiles are retrieved into the
thermosphere. The coincidences criteria
used are 10◦ of lat, 20◦ of lon and 6 hrs of
time. Coincidences are sparse in the
tropics.

❑ Biases in the troposphere and stratosphere
are consistent with previous datasets, so
the vote seems to be pretty unanimous
that MLS has a warm bias in the
stratosphere.

❑ MLS is colder than ACE by of order 5 K in
the mesosphere, and this bias increases
into the thermosphere, to the 0.001 hPa
top of MLS retrievals. A low bias in MLS is
consistent with radiance residuals showing
under-fit line centers at the highest
paintings. Something is pulling MLS down,
as the retrieval minimizes χ2. This is an
area of current research.

❑ There is significant seasonal variation in the
highest altitude biases.
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Comparison with HALOE
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a)

scatter (solid) prec. (dashed)❑ HALOE is a solar occultation
instrument on UARS.

❑ Coincidence criteria are within 250 km
and 6 hrs for sunrises and sunsets.

❑ In the mesosphere (∼1 hPa to ∼0.01 hPa,
Z=0–2) MLS-minus-HALOE biases are
less than 5 K, and at 0.01 hPa (Z=2),
they are of the opposite sign (MLS is
generally warmer than HALOE.)

❑ I have only begun to look at this
mesospheric data, so there is much to
be done.

❑ Biases are consistent with MLS being
warm in the upper stratosphere, except
near 1 hPa in S. high-latitude winter. A
similar bias was observed in AIRS
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More Comparison with CHAMP
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Comparison Summary

−10 −5 0 5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(K)

P
re

ss
ur

e 
(h

P
a)

MLS−ACE

MLS−HALOE

MLS−AIRS

MLS−CHAMP

MLS−GEOS4

0 5 10 15

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

P
re

ss
ur

e 
(h

P
a)

(K)

❑ A reasonably consistent
picture of MLS biases has
emerged.

❑ This summary plot is for
the first part of 2005,
standard temperature.
(the Core/CorePlusR2A
hybrid is very similar to
pure Core.) The black
line is MLS RMS.

❑ There is much work to
be done, particularly in
improving MLS
temperature in the
troposphere, where the
use of information (R3
radiances) that would
improver resolution leads
to large biases.
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